
WAVES 

1.) A wave is a disturbance that moves through a medium.  (You 
can’t have water waves without water!)  

3.) A wave produced by a force that is in the same direction as the 
propagating wave disturbance is called a longitudinal wave. 

2.) A wave produced by a force that is perpendicular to the direction 
of propagation of the wave disturbance is called a transverse wave.   

a.) An example of a transverse wave is:  

i.) the wave produced when a taught string it jiggled.   
i.) the wave produced when a rock is thrown into a pond.   

a.) An example of a longitudinal wave is sound wave.  

1.) 



RESONANCE 

1.) A spring has one frequency at which it will vibrate.  That frequency is 
called the ‘natural frequency’ of the spring system.  

3.) This is called resonance. 

4.) In fact, if you apply a periodic force to system and the frequency of 
that force matches one of the natural frequencies of the system, the 
amplitude of the system’s oscillation will get bigger and bigger and you 
will have a resonance between the force and the system.  

2.) Apply a force to the spring. If the frequency of the force matches the 
natural frequency of the spring system, the amplitude of the spring’s 
oscillation will become bigger and bigger.   

2.) 



SUPERPOSITION OF WAVES 

1.) If waves from two sources moving in the same medium superimpose 
on one another, the waves will overlay one another.  

a.) If the overlay produces an additive effect, the superposition is 
said to be constructive superposition.   

b.) If the overlay produces a subtractive effect, the superposition is 
said to be destructive superposition.   

3.) 



STANDING WAVES 

A standing wave is generated when waves generated by two different 
sources in a system superimpose creating a single, orderly wave.   

4.) 

The classic example of the production of standing waves uses a rope 
tied rigidly to a fixed structure at both ends.  If one end is jiggled so as 
to generate a wave, that wave will proceed down the rope (let’s say it 
moves to the left) until it strikes the fixed end on the left whereupon it 
will bounce and move back toward the right.  If the jiggle is periodic 
producing wave after wave, the “new” waves moving to the left will 
superimpose with the bounced waves moving to the right.  
 
Normally, this superposition will appear chaotic with the rope jumping 
around somewhat chaotically.  But under the right condition, the 
resulting motion will be very orderly. 



STANDING WAVES on a ROPE 

The right condition is essentially that of resonance:   

5.) 

If the frequency of the force producing the vibration just happens to 
match one of the natural frequencies of the oscillating system, the 
resulting superposition will produce standing waves. 

There is a trick tp determining what frequency (or frequencies) will 
do this.  That trick starts by looking at the geometry of the system.   
 
To see how this works, we’ll look at our rope example more closely.  
But before we do, there are a few observation we need to make.   



6.) 

1.)  As you know, a wave is traditionally characterized by its frequency    , 
its wavelength     and its wave velocity v. λ

ν

v (meters/second) 

λ (meters/cycle)

ν (cycles passing
  by per second)

2.)  The relationship between these three parameters is: 
v = λ ν.



7.) 

3.)  That means that if we know the wave velocity, and if we can 
determine the “appropriate wavelength” for a given situation, we can 
determine the frequency of the wave and, hence, the frequency our force 
must vibrate at to generate a standing wave. 

4.)  So how to get the “appropriate wavelength” for a given system? 
 
Let’s look at our rope situation.  What constraint must our “appropriate 
wavelength” satisfy?  Well, it better have a node (a “fixed” point) at each 
end, as each end is tied to a rigid structure and can’t move.  What kind of 
wave will do that?  Three are shown below. 

NOTICE: In all three cases, the end-point constraints are met (that is, 
they ALL have nodes at both ends of their respective wavelengths). 



8.) 

5.)  This is all fine and dandy, but how does it help with our problem?  It 
helps because we know that the span between the ends is a fixed 
distance “L.”  All we have to do it link “L” to the wavelengths viewed, and 
we have the wavelengths in terms of a know quantity.  Specifically: 

a.)  For the first situation:  We know “L,” so the question is, “How 
many wavelengths are in “L?”   

L 

Looking at the wave, we can see that there are two quarter-wavelengths 
(     ) in L (sounds obscure—you’ll get used to it).  That is, we can write:  λ
4

L = 2 λ
4( )

   ⇒    λ = 2L.



9.) 

6.)  Assuming we know the wave velocity (this would normally be given), 
we can write: 

7.)  So let’s say the wave velocity is 3 m/s and the length of the rope 
is 2 meters.  That means:  

v = λ ν
  = 2L( )ν

  ⇒    ν = v
2L

ν =
v

2L

  =
3 m/s( )

2 2 m( )
  ⇒    ν = .75 sec−1   (this unit is the same as a Hertz, Hz)



10.) 

8.)  Apparently, if we jiggle the rope at .75 Hz, we will get a standing wave 
on the rope that, over time, looks like: 

9.)  We could do a similar bit of analysis for the other two waveforms.   

10.)  ONE OTHER THING:  If there had been any internal constraints—if, 
for instance, we had pinched the rope at L/2 making that point a node, 
then our waveform wouldn’t have worked (look at it—there is an anti-
node—an extreme—at L/2) and we would have had to have done a bit 
more thinking (you’ll see examples of this in class). 



11.) 

So in general, what is the procedure to be followed in these kinds of 
problems?  They are: 

a.) Identify the end-point constraints.  (In our example, it was that 
there had to be nodes—fixed points—at each end.) 

b.) On a sine wave, identify what the waveform is going to look like.  
(You’ll see examples of this in class.) 

c.) Once you know what the waveform should look like, be sure that 
any internal constraints imposed on the system are met by the 
waveform.  (Again, you’ll see examples of this in class.)   
d.) When satisfied, ask the question, “How many quarter-wavelength 
are there in L?”  Put a little differently, fill in the ? in the expression: 

?( ) λ
4( ) = L

e.) Solve for     in terms of L, then use               to get the required 
frequency. 

λ v = λ ν



Pipe Closed at One End 

1.) Consider a pipe of length “L” closed at one 
end.  What frequency of sound will stand in the 
pipe?  

2.) In a problem like this, the first thing you have 
to do is identity what standing waves will fit in the 
pipe.  To do that, you have to begin by identifying 
the end-point constraints.  

a.) For a pipe closed at one end, the end-
point constraints dictate an anti-node at the 
open end and a node at the closed end.  

12.) 

Another outstanding example of a standing wave is the 
waveform that is generated when air is piped through a 
tube.  



anti-node anti-node anti-nodenode

1st  waveform

3rd  waveform

2nd  waveform

3.) The waveforms that fit the bill 
are shown below, then reproduced 
in the vertical:  

13.) 



5.) If we ask the question, “How many 
wavelengths are there in “L?”  (That is, 
we need to complete the 

?λ = L

14.) 

Minor Note: In real life, the effective length of the tube has to be altered due to perturbation 
effects at the ends.  In the case of a singly open tube, the effective length of the tube isn’t 
“L” but rather “L+.4d,” where “d” is the tube’s diameter.  For doubly open tube, it’s “L+.
8d.”   

4.) Each section of wave has a numerical 
length equal to the length of the tube, or “L.”  

1
4
λ1 = L

   ⇒    λ1 = 4L

By examination, there is a quarter 
wavelength in “L,” so we can write: 



v = λ1ν1

   ⇒    ν1 =
v
λ1

   ⇒    ν1 =
v

4L

   ⇒    ν1 =
(330 m/s)

4(2 m)
   ⇒    ν1 = 41.25 Hz

7.) Put a 41.25 Hz tuning fork at the mouth of our tube and it will howl quite 
loudly. 

15.) 

6.) We know the speed of sound in air is 
approximately 330 m/s and we know the 
relationship between a wave’s velocity and 
its wavelength and frequency is               .  
Assuming the tube’s length is 2 meters 
(and ignoring the radius correction 
mentioned at the bottom of the previous 
page), we can write: 

v = λ1ν1



8.) Doing the same calculation 
for the second situation where 
there is three-quarter of a wave 
in “L,” we can write:  

v = λ2ν2

   ⇒    ν2 =
v
λ2

   ⇒    ν2 =
v

4
3( )L

   ⇒    ν2 =
(3)(330 m/s)

4(2 m)
   ⇒    ν2 = 123.75 Hz

9.) Put a 123.75 Hz tuning fork at the mouth of our tube and it will howl 
quite loudly. 

16.) 



10.) Doing the same calculation 
for the third situation where 
there is five-quarters of a wave 
in “L,” we can write:  

v = λ3ν3

   ⇒    ν3 =
v
λ3

   ⇒    ν3 =
v

4
5( )L

   ⇒    ν3 =
(5)(330 m/s)

4(2 m)
   ⇒    ν3 = 206.25 Hz

11.) Put a 206.25 Hz tuning fork at the mouth of our tube and it will howl 
quite loudly. 

17.) 



Pipe Open at Both Ends 

12.) Consider a pipe of length “L” open at both 
ends.  What frequency of sound will stand in the 
pipe?  

13.) In a problem like this, the first thing you have 
to do is identity what standing waves will fit in the 
pipe.  To do that, you have to begin by identifying 
the end-point constraints.  

a.) For a pipe open at both ends, the end-
point constraints dictate anti-nodes at the 
both ends.  

18.) 



14.) On the sine wave presented 
below, you can see the 
waveforms that satisfy the end-
point constraints.  Once 
determined, they can be put on 
the sketch to the right (though 
on a test you probably won’t 
redraw the sketch to fit the 
actual pipe).  

19.) 

anti-node anti-node anti-node anti-node

1st  waveform

2nd  waveform

3rd  waveform



20.) 

15.) The lowest frequency--the longest 
wavelength--is shown as the first sketch 
to the right.  Noting that             , we can 
write:  

v = λ1ν1

   ⇒    ν1 =
v
λ1

   ⇒    ν1 =
v

2L

   ⇒    ν1 =
(1

2)(330 m/s)
(2 m)

   ⇒    ν1 = 82.5 Hz

1
2
λ1 = L

16.) Send a 330 Hz sound wave down the tube, and it will howl at that 
frequency. 



21.) 

16.) The second lowest frequency--the 
second longest wavelength--is shown as 
the middle sketch to the right.  Noting 
that             , we can write:  

v = λ2ν2

   ⇒    ν2 =
v
λ2

   ⇒    ν2 =
v
L

   ⇒    ν2 =
(330 m/s)

(2 m)
   ⇒    ν2 = 165 Hz

λ2 = L

16.) Send a 165 Hz sound wave down the tube, and it will howl at that 
frequency. 



15.) 

16.) The second lowest frequency--the 
second longest wavelength--is shown as 
the middle sketch to the right.  Noting 
that                         , we can write:  

v = λ3ν3

   ⇒    ν3 =
v
λ3

   ⇒    ν3 =
v

2
3

L⎛
⎝⎜

⎞
⎠⎟

   ⇒    ν3 =
(3)(330 m/s)

(2)(2 m)
   ⇒    ν3 = 247.5 Hz

6
4
λ3 =

3
2
λ3 = L

16.) Send a 110 Hz sound wave down the tube and it will howl at that 
frequency. 


